Mast cells mediate substance P-induced bladder inflammation through an NK(1) receptor-independent mechanism.
نویسندگان
چکیده
The role of neurokinin-1 receptors (NK1R) in the interaction between mast cells and substance P (SP) in bladder inflammation was determined. Mast cell-deficient Kit(W)/Kit(W-v), congenic normal (+/+), and Kit(W)/Kit(W-v) mice that were reconstituted with bone marrow cells isolated from NK1R(-/-) mice were challenged by instillation of SP, antigen, or saline into the urinary bladder. Twenty-four hours after challenge, the bladders were prepared for morphological assessment and gene expression. SP-induced bladder inflammation was mast cell dependent and did not require NK1R expression on the mast cell. Cluster analysis identified functionally significant genes that were dependent on the presence of mast cells for their upregulation regardless of stimulus. Those include serine protein inhibitor 2.2, maspin, mitogen- and stress-activated protein kinase 2, and macrophage colony-stimulating factor 1. Our findings demonstrate that while mast cells are essential for both antigen- and SP-induced bladder inflammation, there are common genes and unique genes expressed in each type of inflammatory reaction. When combined with unique animal models, gene array analysis provides a useful approach for identifying and characterizing pathways involved in bladder inflammation.
منابع مشابه
Substance P via NK1 receptor facilitates hyperactive bladder afferent signaling via action of ROS.
We explored whether substance P (SP) via neurokinin (NK) receptor facilitates bladder afferent signaling and reactive oxygen species (ROS) formation in bladder in association with neurogenic inflammation. We evaluated ROS activity and cystometrograms as well as pelvic nervous activity in anesthetized rat bladder with SP stimulation. Our results showed that endogenous SP via NK(1), not NK(2), re...
متن کاملStress-induced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice.
Migraine headaches are often precipitated by stress and seem to involve neurogenic inflammation (NI) of the dura mater associated with the sensation of throbbing pain. Trigeminal nerve stimulation had been reported to activate rat dura mast cells and increase vascular permeability, effects inhibited by neonatal pretreatment with capsaicin implicating sensory neuropeptides, such as substance P (...
متن کاملFunctional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor.
It is widely accepted that neurokinin 1 (NK(1)) receptors are not generally expressed on mast cells but little is known about their expression in inflammation. The present study shows expression of NK(1) receptors on bone marrow-derived mast cells (BMMC) under the influence of IL-4 or stem cell factor (SCF). Highest expression was found when both cytokines are present. Six days of coculture wit...
متن کاملSubstance P (SP) induces expression of functional corticotropin-releasing hormone receptor-1 (CRHR-1) in human mast cells
Corticotropin-releasing hormone (CRH) is secreted under stress and regulates the hypothalamic-pituitary-adrenal axis. However, CRH is also secreted outside the brain where it exerts proinflammatory effects through activation of mast cells, which are increasingly implicated in immunity and inflammation. Substance P (SP) is also involved in inflammatory diseases. Human LAD2 leukemic mast cells ex...
متن کاملMast Cell-Derived Histamine Mediates Cystitis Pain
BACKGROUND Mast cells trigger inflammation that is associated with local pain, but the mechanisms mediating pain are unclear. Interstitial cystitis (IC) is a bladder disease that causes debilitating pelvic pain of unknown origin and without consistent inflammation, but IC symptoms correlate with elevated bladder lamina propria mast cell counts. We hypothesized that mast cells mediate pelvic pai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 4 شماره
صفحات -
تاریخ انتشار 2002